

CMSC 498F: Robotics and Perception, Spring 2017

Project 4: Mapping

Implement the project by modifying project_4 package provided to you and changing the name to look

like <my_directory_id>_project_4 (the package is further referred as ‘project_4’ for simplicity). Hand in

this project by uploading the package via the ELMS website. To change the package name change the

name of the package folder and contents of package.xml and CMakeLists.txt

Most of the guidelines (as well as starter code) are designed for Python. C++ developers will get some

additional extra credit (+20%, as usual) for their implementations.

DELIVERABLES:

● <my_directory_id>_project_4 - package with your code

● A screenshot of your map built in rviz with resolution of 0.05

This time you will have to build a map of the robot’s environment using laser scanner data collected from

a moving robot.

1. Coordinate conversion

Our map discretizes the world into a grid of cells. The relation between the grid and the continuous world

is defined by five parameters:

● origin_x and origin_y - defining the bottom left corner of the grid (in world coordinates)

CMSC 498F: Robotics and Perception, Spring 2017

● resolution - the (square) size of each grid cell (world units)

● size_x and size_y - the number of grid cells in each dimension.

In order to create the map of the environment we need to know how to convert between world

coordinates and grid coordinates. In project_4/src/project_4/geometry.py write the following two

functions:

● Convert the coordinate (x, y) (a pair of floats in world coordinates) by returning a pair of integer

coordinates in the grid. If the coordinates are outside the defined grid, the function should return

None . You can use int(x) to convert a float to an integer.

def to_grid(x, y, origin_x, origin_y, size_x, size_y, resolution)

● Convert a pair of integers in grid coordinates (gx, gy) by returning a pair of float coordinates

representing the center of the grid cell in world coordinates.

def to_world(gx, gy, origin_x, origin_y, size_x, size_y, resolution)

Note that if your coordinate conversion functions don’t work correctly you won’t be able to complete the

second part of the project. You can test your functions using the following script:

rosrun project_4 coordinate_test.py

2. Map building

To build the map you will use data from a scanning laser range finder sensor or just laser scanner for

short. This sensor measures the distance to the objects in the environment by sweeping a laser in a

circular arc. The sweeping plane is parallel to the ground. Range measurements are made at constant

angular steps. The properties of the scanner are defined by the following parameters:

CMSC 498F: Robotics and Perception, Spring 2017

Figure 2: Parameters of a laser scanner. Red and green arrows represent the X and Y axes of the

coordinate frame of the laser scanner respectively. ranges is an array of distance measurements returned

by the scanner.

● angle_min and angle_max - defining the circular arc

● angle_increment - the angular step between consecutive laser rays

● range_max - maximum distance from the scanner to an obstacle

In ROS these parameters along with the distance readings are stored in the LaserScan messages. Data

from the laserscanner allows us to divide the space around the robot into occupied space (endpoints of

the rays) and free space (space along each ray). Since the scans are collected from a moving robot, in

order to fuse them into a map they need to be oriented correctly relative to each other. To do this you

can use the odometry information from the robot. Although rarely true in real applications, for this

project you can assume that the origin of the laser is at the coordinates indicated by the odometry.

Fill in the details of the MapMaker class in project_4/src/project_4/map_maker.py to create a map from

Odometry and LaserScan messages. Whenever you get a laser reading, use the most recent odometry

message (and the coordinate conversion methods from part 1) to clear out the empty space in the map

(by changing the cell value to 0) and mark the occupied cells (with 100). All cells are initially -1 i.e.

unknown space. Note that you should not mark cells as occupied if the range is greater than or equal to

the range_max of the laser scanner. The map will be built in the OccupancyGrid message. Instead of a two

dimensional grid, the data is stored in a one-dimensional vector (OccupancyGrid.data).

The following functions are already provided for you in geometry.py and map_maker.py

● to_index(x, y, size_x) converts a pair of integer grid coordinates to grid index.

● bresenham finds coordinates of grid cells occupied by a line in the map.

● visualize_scans visualizes robot pose, laser rays and cell occupancy information. Use it for

debugging your code.

CMSC 498F: Robotics and Perception, Spring 2017

To test your code use the prerecorded bag file project_4/Mapping1.bag containing odometry and

laserscan messages collected from a robot. To test your code use project_4/src/ros_map.py script which

automatically reads the bag file and calls your functions from map_maker.py to process the messages and

build the map. You can also change the resolution of the map with the -r argument. By default it is 0.5

meters. Try 0.25 and 0.05 .

rosrun project_4 ros_map.py Mapping1.bag -r 0.05

You can visualize the map building process using

run rosrun rviz rviz -d project_4/map.rviz

which will display the laser data as well as the map as you build it. Note that rviz will show laserscans that

are already aligned to the robot pose. However, to build the map you need to do the alignment yourself in

your process_scan method. Generate a map at resolution of 0.05 and submit the screenshot of the map

from rviz along with your project_4 package.

TIP : use the following code to convert the orientation component of an Odometry message to Euler

angles:

orientation = msg.pose.pose.orientation

orientation = (orientation.x, orientation.y, orientation.z, orientation.w)

theta = euler_from_quaternion(orientation)[2]

3. Grading

to_grid 20 points

to_world 20 points

Scan alignment 30 points

Map building 30 points

