

CMSC 498F: Robotics and Perception, Spring 2017

Homework 3: Vision Intro

Implement this homework by modifying ​detect.py ​ file provided to you. Hand in this homework by

uploading the .zip archive via the ELMS website.

Most of the guidelines (as well as starter code) are designed for Python. C++ developers will get some

extra credit (+20%) for their implementations. If you have ROS installed on your laptop, OpenCV should be

already there. If not, you will need to install it. Try to use OpenCV 2.4!

DELIVERABLES:

● .zip ​ archive with your code and other files

● .csv​ file with detected corners for part 1

● Camera calibration file for part 2

1. Chessboard (15 pts)

For this part you need to detect the chessboard corners. The starter code is given to you in

detect.py ​ - it will open an image and show it on the screen, but you will need to do all the processing.

Modify the ​process ​ method of the ​CbDetect ​ class. Surely, there is a ​ready-made function​ in opencv

(​findChessboardCorners​) which can detect chessboard corners for you, but you should write your own

one! You will need to use pyopencv and numpy (opencv and eigen for C++) and you will need to detect

chessboard corners but remove all false positives (many of them are on the carpet). You will have some

sample chessboard pictures in the ​Imgs​ folder. To run the starter script, run:

./detect.py -n Imgs/IMG_20170209_042634.jpg

Your code (given an input image) should show it with corners

detected. Also, it should generate a ​.csv​ file with each detected

corner on a new line.

The (probably) easiest way to go will be to use the ​Harris corner

detector​ and then add some constraints - you know how many

corners you need to detect (the chessboard is fully visible all

the time), and you know that points tend to be located on ​one

line​. You can also detect the white background of the

chessboard to remove the carpet!

Some C++ OpenCV tutorials: ​link​, ​link

Python tutorials: ​link

http://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/camera_calibration.html?
https://en.wikipedia.org/wiki/Comma-separated_values
http://docs.opencv.org/2.4/doc/tutorials/features2d/trackingmotion/harris_detector/harris_detector.html
http://docs.opencv.org/2.4/doc/tutorials/features2d/trackingmotion/harris_detector/harris_detector.html
http://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/hough_lines/hough_lines.html
http://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/hough_lines/hough_lines.html
http://docs.opencv.org/2.4/doc/tutorials/introduction/linux_gcc_cmake/linux_gcc_cmake.html
http://docs.opencv.org/2.4/doc/tutorials/tutorials.html
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_tutorials.html

CMSC 498F: Robotics and Perception, Spring 2017

2. Calibration (5 pts)

Try a real camera calibration in ROS! Follow ​this​ tutorial and get a camera calibration file for you own web

camera! Do not forget to put this file in your .zip archive.

http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration

